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Contact-less measurements of Shubnikov-de Haas oscillations in the magnetically

ordered state of CeAgSb2 and SmAgSb2 single crystals
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Shubnikov - de Haas oscillations were measured in single crystals of highly metallic antiferromag-
netic SmAgSb2 and ferromagnetic CeAgSb2 using a tunnel diode resonator. Resistivity oscillations
as a function of applied magnetic field were observed via measurements of skin depth variation.
The effective resolution of ∆ρ ≃ 20 pΩ allows a detailed study of the SdH spectra as a function of
temperature. The effects of the Sm long - range magnetic ordering as well as its electronic structure
(4f -electrons) on the Fermi surface topology is discussed.
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INTRODUCTION

Measurements of quantum oscillations in the resistivity
(Shubnikov - de Haas effect (SdH)) and in the magneti-
zation (de Haas - van Alphen effect (dHvA)) are among
the primary experimental techniques to study the geom-
etry of Fermi surfaces in metals [1, 2]. Although both
originate from the basic physics of Landau quantization
of electron orbits in a magnetic field, the coupling of elec-
tron motion to resistivity is different from that of mag-
netization. Electron transport depends on the density of
states and the scattering rates, both modulated by the
Landau quantization. Within a standard theory [1] for
a three-dimensional Fermi surface the amplitude of the
rth harmonic oscillatory part of magnetization is given
by [2],

Mr ∝
SextrB

1/2

mc |S”|
1/2

extr

RT (r) RD (r) RS (r) (1)

where mc is the cyclotron mass, Sextr is the extremal
cross-section of the Fermi surface (FS), |S”|extr =
(

∂2S/∂p2
B

)

extr
is a measure of the FS curvature along

B at the extremal cross-section, and the damping fac-
tors RT , RD, and RS are caused by finite temperature,
scattering and Zeeman splitting, respectively. The corre-
sponding fundamental frequency is

f =
Sextr

he
(2)

On the other hand, the amplitude of Shubnikov - de
Haas oscillations in electrical resistivity is proportional
to

αr ∝
mcSextrB

1/2

|S”|1/2

extr

RT (r) RD (r) RS (r) (3)

with the same damping factors as for dHvA effect. Typ-
ically, oscillations of resistivity are more difficult to mea-

sure, especially in highly conducting samples. The prob-
lem is worse for small single crystals where attaching the
contacts is not an easy task. It should be noted that the
SdH amplitude dependence on the mc is reciprocal to the
dHvA amplitudes: αr/Mr ∝ m2

c , so for small mc, the rel-
ative amplitude of the SdH oscillations is suppressed.

The alternative to direct transport measurements is to
measure the skin depth. This paper describes the use
of highly sensitive tunnel-diode oscillator technique for
the quantitative study of quantum oscillations in metal-
lic samples. The technique is especially useful for small
samples when attachment of contacts is difficult. De-
tailed analysis of the raw data is presented.

THE TECHNIQUE

An oscillating magnetic field of frequency f penetrates
a metallic sample, decaying in a typical length δ, the skin
depth. In the local limit, where E = ρj, δ is given by the
normal skin effect expression [3],

δ =
c

2π

√

ρ

µf
(4)

where ρ is resistivity and µ is magnetic permeability. Un-
fortunately, typical AC magnetometers are not sensitive
enough to measure this depth with sufficient precision. In
addition, for typical low-frequency magnetometers (up to
kHz frequencies), skin depth is too large compared to the
small crystal size. For higher-frequency techniques, such
as microwave or infrared reflectivity and absorption, the
anomalous skin effect and possible dynamic effects (e.g.
magnetic relaxation) take place. Although the anoma-
lous skin effect was originally used to study Fermi sur-
faces [4], in the extreme anomalous limit the skin effect
is no longer determined only by the resistivity, but also
by the electronic mean free path, ℓ. The skin depth then
depends on a product ρℓ, which is independent of the
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scattering rate and cannot be used for contact-less mea-
surements of resistivity.

In this work, a self-resonating, tunnel diode driven LC
circuit was used for precise measurements of the effect
of temperature and magnetic field on the skin depth of
CeAgSb2 and SmAgSb2. The circuit had a natural oscil-
lation frequency of ≃ 10 MHz. Originally, this technique
was developed to measure London penetration depth in
small superconducting crystals, where its great sensitiv-
ity was a key factor. Details of the apparatus and calibra-
tion are given elsewhere [5, 6]. Tunnel diode resonators
have been used for qualitative studies of the skin depth
oscillations in pulsed magnetic fields in organic supercon-
ductors with relatively large normal-state resistivities (
> 200 µ Ω · cm) [7, 8]. Although little quantitative anal-
ysis was reported, these studies demonstrate the effec-
tiveness of the technique.

When a metallic sample is inserted into a coil which is
part of an LC circuit the resonant frequency changes from
f0 to f . This change is caused by two effects: the dia-
magnetic skin effect, which screens the alternating mag-
netic field from the bulk of the sample and the magnetic
permeability µ of the sample. The measured frequency
shift ∆f = f (T, H) − f0 is given by the total dynamic
magnetic susceptibility of the sample, χ = dM/dH [5],

∆f

∆f0

= 1 −
µδ

2R
tanh

(

2R

µδ

)

(5)

where R is the effective sample dimension (for an in-
finite slab of width w, R = w/2) and skin depth δ is
given by Eq.(4). The maximal expulsion frequency, ∆f0,
(frequency shift in the limit of a perfect conductor with
δ = 0) depends only on the geometry of the sample and
parameters of empty resonator and is given by

∆f0 =
fV

2V0 (1 − N)
(6)

where V is the sample volume, V0 is the effective coil vol-
ume and N is the demagnetization factor [5]. In deriving
Eq.(5) it is assumed that ∆f0 ≪ f0, which is always the
case in our frequency and sample size range (the base
frequency is approximately f0 = 107 Hz, whereas typical
∆f0 = 104 Hz). The factor µ in Eq.(5) comes from the
direct magnetic contribution of magnetic permeability in
the skin layer via B = µH , which enters the total mag-
netic moment after integration over the sample volume.
A similar effect was discussed before for superconductors,
[9]. However, the direct contribution of magnetic per-
meability in the samples under study is minor. This is
because we obtain useful information only well below the
ordering temperature and in high magnetic fields where
µ ≈ 1. The oscillating part of the permeability is small
due to very small excitation field, Hac ≈ 20 mOe. In
addition, magnetic field only penetrates the skin depth
layer and its direct contribution to the total susceptibil-
ity is attenuated by the factor of (δ/R) compared to the

skin effect contribution. In other magnetic systems with
large polarizability or in the vicinity of the magnetic or-
dering temperature, direct magnetic contribution could
be important, but this is not relevant to the present work.

Obviously, the described technique is sensitive only as
long as the skin depth is less than the effective sample
size. For larger skin depth (larger resistivity), the sample
becomes transparent to an oscillating magnetic field. For
example, in our particular setup in actual units,

δ [µm] = 15
√

ρ [µ Ω · cm] (7)

With small crystals of typical size of R = 500 µm, we
can roughly estimate the upper limit where the described
technique is sensitive. By equating δmax = R, we obtain
ρmax = (500/15)

2
≈ 1000 µ Ω · cm. Measurements on

samples with larger resistivities are possible, but require
larger samples or higher frequencies (both of which are
possible). At the opposite extreme for samples with very
small resistivities, the limitation is the anomalous skin
effect, which becomes relevant when skin depth becomes
smaller than the electronic mean free path, ℓ, and the
local version of the Ohm’s law is no longer valid. We can
roughly estimate the lower threshold of resistivity below
which anomalous skin effect takes place by using a Drude
approximation for which the mean free path is given by

ℓ =

(

3π2
)1/3

~

n2/3e2ρ
(8)

where n is the electron density and e is the electron
charge. Therefore, using Eq.(4) we obtain ρmin at which
ℓ = δ,

ρmin =

(

µfπ7/332/3
~

2

n4/3e4

)

1

3

≈ 8.6 ×
(µf)

1/3

n4/9
(9)

For a typical nonmagnetic metal with n = 5 × 1028 m−3

and our frequency, f = 107 Hz, we obtain ρa ≈ 0.03
µΩ· cm. Therefore, our method allows direct quantita-
tive study of (contact-less) resistivity in small crystals
approximately in the range of 0.03−1000 µΩ· cm, which
covers most metallic materials of interest. Furthermore,
the difficulty of measuring small highly conducting sam-
ples by conventional means turns to be an advantage for
the data analysis. In the regime of good metals, the data
is significantly simplified, because the tanh (R/δ) term
in Eq.(5) becomes relevant only for δ ≥ 0.2R. In the
samples discussed below, the resistivity varies between
0.1 − 10 µ Ω · cm, for which δ/R = 0.01 − 0.1 and there-
fore, we can simply use the linear version of Eq.(5).

∆f

∆f0

= 1 −
µδ

2R
(10)

It should be noted that it is still straightforward to invert
full equation Eq.(5) to obtain the skin depth numerically.
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In the measurements reported below, slab - shaped
samples were positioned inside the resonant coil on a
sapphire sample holder. The crystallographic c− axis
was parallel to both the AC excitation and DC magnetic
fields. In this arrangement, screening currents flowed in
the ab− plane and therefore the in-plane component of
the resistivity was measured. A typical run was from 0
to 9 Tesla DC field and back to 0 T with about 10000
data points taken in each leg. Various ramp rates where
used with the slowest being 3.5 G/s.

SAMPLES

In this work, the skin depth was measured in
two isostructural tetragonal intermetallic compounds:
CeAgSb2 and SmAgSb2 single crystals. Both materials
(and related compounds) were studied before [10, 11, 12,
13, 14], though with much more attention to CeAgSb2

which undergoes a ferromagnetic transition along the
c− axis below Tc = 9.8 K. SmAgSb2 is antiferromag-
netic with TN = 9.5 K. Transport and magnetic prop-
erties, including direct measurements of dHvA and SdH
effects were reported previously [12, 13, 14]. Whereas
SdH in CeAgSb2 showed a single dominant frequency at
0.25 MG, in SmAgSb2 the behavior is much more com-
plex with several frequencies and significant difference
between dHvA and SdH spectra. One difference between
CeAgSb2 and SmAgSb2 is substantially larger scatter-
ing rates in the former (as evident from RRR). Also,
as we show below, small changes in the Fermi level lead
to significant changes of the Fermi surface structure and
appearance of new extremal orbits.

Single crystals of CeAgSb2 and SmAgSb2 were grown
out of Sb flux [12, 15]. The starting materials were placed
in an alumina crucible and sealed under vacuum in a
quartz ampule, heated to 1150 ◦C, and then cooled to
670 ◦C over 120 hours. The best crystals with the clean-
est surface were selected and cut with a blade along the
sides for the measurements. The samples are shown in
Fig. 1. The c-axis was perpendicular to the largest face.
The residual resistivity ratio, RRR = ρ (300 K) /ρ (2 K)
was determined by standard four-point measurements.
For SmAgSb2 we obtained RRR = 200 and for CeAgSb2

RRR = 70. The transport measurements were per-
formed on bar-shaped samples from the same batches
that were used for resonator measurements, shown in
Fig.1.

RESULTS

Figure 2 shows resistivity versus temperature obtained
from the frequency shift by using Eq.(5) and (4). The
skin depth is shown in the inset. The high-temperature
(at T = 20 K) resistivity data was used to normalize

FIG. 1: Optical images of studied crystals. (a) CeAgSb2 and
(b) SmAgSb2. Each crystal was 0.7 × 0.7 × 0.3 mm3.

the calibration constant, ∆f0. Direct calibration with
known parameters of the oscillator produce very similar
temperature dependence, but the offset (residual resistiv-
ity) cannot be obtained from this technique, because it
only measured the relative frequency change. However,
this is only beneficial for the present study, as we are only
interested in changes of resisivity in a magnetic field and
are not sensitive to static resistivity background.
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FIG. 2: Resitivity versus temperature for SmAgSb2 single
crystal measured directly (open symbols) and inferred from
the skin depth measurements (solid line). The inset shows
variation of the skin depth with temperature.

As expected, due to an increase of spin-disorder and
phonon scattering, the resistivity sharply decreases below
TN . The reconstructed resistivity (solid line) is compared
to direct four-point measurements performed on the sam-
ple from the same batch. Evidently, the quantitative
agreement is good. Similarly, a good agreement was ob-
tained for ρ (T ) measured in various applied magnetic
fields where the magneto-resistance followed a Kohler
rule as described in detail in Ref.[12].

The oscillations of resistivity were obtained from the
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measured oscillations in the skin depth, which in turn
were obtained from the oscillating frequency shift. An ex-
ample of the raw data for both, CeAgSb2 and SmAgSb2

are shown in Fig. 3 in the top and bottom panels, re-
spectively.
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FIG. 3: Relative frequency shift in a magnetic field for
CeAgSb2 (top) and SmAgSb2 (bottom) at 1.8 K.

For SmAgSb2 the resistivity oscillations reconstructed
from the frequency shift are shown as a function of H−1

in Fig. (4). A smooth ρ (H) background was subtracted
using non-oscillating piecewise cubic hermite interpolat-
ing polynomial algorythm in Matlab. The amplitude of
the oscillations diminishes for temperatures approaching
the Neél temperature from below, as anticipated from the
increasing spin disorder scattering evident from Fig.2.

Power spectra were obtained from the oscillations by
using a Fourier transformation. The result is shown in
Fig.(5). At a first glance, the spectra are quite similar
to those reported from the previous direct measurements
of the SdH oscillations [13]. However, closer inspection
reveals additional details, most likely due to higher sen-
sitivity of our measurements.

Figure (6) shows low-frequency detailed spectrum of
oscillations obtained at T = 0.5 K. In addition to pre-
viously observed main β peak, there is a sharp adjacent
peak at 0.9 MG, which was apparently unresolved in pre-
vious direct measurements, at least down to 1.8 K. This
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FIG. 4: Oscillations of the reconstructed resistivity (note the
resistivity scale (the curves are offset for clarity)) versus re-
ciprocal magnetic field in SmAgSb2 single crystal measured
at several temperatures below Tc.

new peak is not a secondary combination of α and β
peaks and we attribute it to the γ′ orbit shown below in
Fig. 11 (a).

Since our measurements are quantitative, it is pos-
sible to plot temperature dependence of the observed
peaks. Figure (7) demonstrates that these dependencies
are quite different. The β peak is suppressed much more
rapidly. Both peaks vanish as the Neél temperature is
approached.

In principle, we cannot rule out the influence of de
Haas - van Alphen oscillations of magnetization (via µ
term in Eq. (5)), however additional features observed in
our data are not seen in the measured dHvA spectra and,
conversely, we do not see the strongest peaks of the dHvA
oscillations. Instead, we see all SdH peaks and resolve ad-
ditional features. In addition, deep inside magnetically
ordered state and in high fields µ is close to unity. The
oscillatory part is a response to very small excitation field
superimposed on very large DC field. To further explore
applicability of the developed technique and rule out un-
expected nonlinear or magnetic effects, we also measured
CeAgSb2, which is isostructural to SmAgSb2, but showed
a well-resolved, single frequency SdH oscillation of 2.5
MG [13]. Figure 8 shows the result of our measurements
at various temperatures below Tc. Clearly, we observe a
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FIG. 5: Power spectra of Shubnikov-de Haas oscillations ob-
tained from the data shown in Fig.(4). The curves are offset
for clarity.
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FIG. 6: Low-frequency portion of the power spectra of
Shubnikov-de Haas oscillations measured in SmAgSb2 at T =
0.5 K.
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FIG. 7: Temperature dependence of β and γ′ peaks power
spectrum amplitudes in SmAgSb2. Inset: log of Fourier trans-
form amplitude over T - used in calculation of the effective
mass.

single frequency oscillations at 0.25 MG.
A typical smallest oscillation amplitude of measured

resonant frequency was about 20 Hz (Figure 8) whereas
our resolution is better than 0.1 Hz. We therefore are
able to measure samples at least 10 − 100 times smaller
than used here (depending on their resistivity and surface
quality).

Figure 9 shows power spectra for the SdH oscillations,
which is similar to these reported previously [13, 14]. The
amplitude of oscillations decreased with the increasing
temperature much more rapidly compared to SmAgSb2.
This decrease, however, is very similar to recent measure-
ments of SdH effect in the same compound where signal
vanishes just above 3 K [14].

DISCUSSION

The difference in relative amplitudes between dHvA
and SdH oscillations is not surprising and is determined
by the effective mass via αr/Mr ∝ m2

c (see Eqs.1 and
3). The temperature dependence of the amplitude of the
SdH oscillations in CeAgSb2, Fig.8, allows us to roughly
estimate the effective mass associated with this orbit to
be m∗ = 0.6 ± 0.15m0. From Fig. 7 an estimate of
the effective mass of the new orbit in SmAgSb2 below
TN , between 2 K and 6 K, gives an approximate value
of 0.15m0, close to the effective mass of the neighboring
β orbit evaluated in a similar temperature/field range
and to the value for a β orbit in LaAgSb2 [13]. This
low value also explains the substantial difference between
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FIG. 8: Shubnikov - de Haas oscillations (raw data in terms
of the resonant frequency shift) in single crystal CeAgSb2

measured at indicated temperatures. The curves are offset
for clarity.

amplitudes of SdH and dHvA effects.

The results of electronic structure calculations of the
two nonmagnetic (NM) compounds from the family
RAgSb2 where R=Y and La were discussed previously
by Myers et al. [13]. It was assumed that substitution
of Y or La for rare-earth element should not significantly
change the electronic structure near the Fermi energy,
EF , because 4f electrons are strongly localized. Observa-
tion of additional frequencies in SmAgSb2 was explained
by the smaller residual resistivity and possible change of
the Fermi surface produced by the new periodicity due to
antiferromangetic ordering [13]. In this paper we revisit
that assumption and calculate the bandstructure specif-
ically for the SmAgSb2 using the tight-binding, linear
muffin-tin orbital (TBLMTO) method within the atomic
sphere approximation (ASA) [16, 17]. The local den-
sity approximation parametrization due to von Barth and
Hedin [18] of the spin-density functional has been used
and the 4f states were treated as core states.

Since the spin structure in the AFM ordered state has
not been experimentally determined, we assume the sim-
plest configuration with magnetic moments of the two
Sm3+ ions (in 4f5 configuration) in the unit cell point-
ing in the opposite directions. Such a configuration has
an energy lower by ∆E = 84 K/cell compared to the
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FIG. 9: Power spectra of Shubnikov - de Haas oscillations
observed in CeAgSb2 single crystal. The curves are offset for
clarity.

ferromagnetically ordered state. In order to estimate the
Neél temperature, TN , we can use the Heisenberg model.
The TN calculated in the mean-field approximation is
equal to 2

3
J0, where J0 is the effective exchange param-

eter and it corresponds to the sum of the interactions
of one magnetic moment with all others. Using the in-
formation about ∆E and the assumption that the only
nonzero interaction corresponds to the nearest neighbors,
we obtain the expression for J0 = ∆E/4. The estimated
TN = 14 K is in reasonable agreement with Neél temper-
ature of 9.5 K observed in the compound.

Figure 10 shows the electronic structure of SmAgSb2

along several high-symmetry directions. The assumed
AFM ordering (bands shown by dashed lines) lifts the
degeneracy in some symmetry directions. However, such
modification of the electronic structure does occur for
the bands crossing Fermi level. Hence, almost all the dif-
ference between the Fermi surfaces of antiferromagnetic
SmAgSb2 and nonmagnetic YAgSb2 [13] is a downshift
of the Fermi level position compared to the band labeled
”1” in Ref. [13]. This shift of EF leads to the modifica-
tion of nearly spherical FS sheet (band 1) centered at a
Γ point, which is transformed into a torus as shown in
Fig. 11 (a) with frequency of 1 MG for H ||c-axis for the
internal circle orbit γ′, close to the frequency of 0.82 MG
of an orbit labeled β in Figure (6) of the second band.
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FIG. 10: (color online) Band structure of SmAgSb2 calcu-
lated from ASA TBLMTO. EF corresponds to zero energy.
The nonmagnetic result is shown by the solid lines; the anti-
ferromagnetic case is shown by the dotted lines.

Another FS sheet which changes significantly corre-
sponds to band 2 and is shown in Fig. 11 (b). Band 2 is
also centered at a Γ point. In addition to mostly cylin-
drical part with axis along kz as in YAgSb2, eight pillow-
shaped segments now appear around the main cylinder
with the frequency of the δ” orbit equal to 1.78 MG.
We therefore conclude that previously unresolved peak
(closest to β) in SmAgSb2 is determined by the γ′ orbit.
The appearance of this orbit is caused by the shift of
EF position with respect to band 1 compared to YAgSb2

where this orbit is absent. This shift is produced by filling
4f states in Sm3+ by five electrons that lead to a slight
change of the d-band occupancy compared to Y-based
compound.

In conclusion, a high resolution method for contact-less
measurements of the resistivity via normal skin depth
was developed to probe Shubnikov-de Haas oscillations
in small metallic samples. Torque measurements can be
used to obtain de Haas- van Alphen oscillations and pre-
sented technique can be applied to the same small sam-
ples to obtain Shubnikov-de Haas signal without modify-
ing the samples (to attach contacts). The application of
the method was demonstrated on RAgSb2 system. Fine
details of the oscillation spectrum (a new γ′ orbit) was
resolved experimentally and explained with refined band-
structure calculations.

We thank Bruce N. Harmon for useful discussions.
Ames Laboratory is operated for the U.S. Department
of Energy by Iowa State University under Contract No.
W-7405-ENG-82. This work was supported in part by
the Director for Energy Research, Office of Basic Energy
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FIG. 11: Fermi surface of SmAgSb2 corresponding to (a)
band 1, (b) band 2 and (c) band 3. The extremal orbits
indicated by greek letters and shown by arrows.
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